
The AsTeRICS Academy
for cross-cultural education in Assistive Technology

Module 4c: Bioelectric Signals
Processing and Classification (Basics)

Foundations of DSP

Basic Operations: convolution

Digital Filters: FIR and IIR

Some Classification methods

Biosignal Libraries and Applications

Practical Demonstrations: Matlab and FiView

Review of Project exercises

Firmware - programming

The Scientist and Engineer's Guide to Digital Signal Processing

by Steven W. Smith, Ph.D. http://www.dspguide.com/

Recommended online book for todays topics:

Topics

3

http://www.dspguide.com/cover.htm

In microprocessor based biomedical applications

 we have Signals that:

 ● are discrete (digitized with a sampling rate)

 ● are to a certian degree spoiled by noise or artifacts

 ● have some properties we are especially interested in

 ● have stochastic and sometimes nearly-deterministic behaviour

Signal characteristics

4

Basic Signal Statistics

Mean:

Standard deviation:

5

Basic Signal Statistics

Histogram, Probability mass function, Probability density function:

6

Foundations of DSP

Signals and LTI-Systems:

 ● Generation of an output signal

 in response to an input signal

 ● discrete and continuous systems

Linear, Timeinvariant Systems:

 ● additivity

 ● homogeneity

 ● shift invariance

7

Foundations of DSP

● Synthesis: in linear systems, signals

 can be combined by scaling and addition

● Decomposition: the inverse operation

8

Foundations of DSP - Superposition

● Any signal can be

decomposed into a group of

additive components xi

● Passing these components

through a linear system

produces signals, yi

● The synthesis of these output

signals produces the same

signal as when x [n] is passed

through the system

9

Foundations of DSP - Convolution

● combined two signals into a third one

● applies a linear system to a signal via

 it‘s impulse response, wich fully describes

 the system behaviour

M .. length of

 impulse response

10

Foundations of DSP – Convolution

Application of a LTI:

 1) multiplication of the

 input samples with

 the flipped impulse

 response

 1) addition of the values

 gives result for the

 corresponding

 output sample

11

Foundations of DSP - Convolution

● many samples of the input signals contribute to one output sample

● the samples of the impulse response act as weighing coefficients

● feeding a delta function into a linear system

 gives the impulse response:

12

Foundations of DSP - Convolution

● simple implemenation of convolution:

// Input Signal: x[80], Impulse Response: h[30]

// Output Signal: y[110]

int i,j;

for (i = 0; i< 110; i++)

 for (y[i]=0,j=0; j<30; j++)

 if ((i-j >= 0) && (i-j<80))

 y[i] = y[i] + h[j] * x[i-j]

13

Impulse-, Step- and Frequency Response

Relationships between impulse-, step- and frequency response:

Note: Convolution in time domain = multiplication in frequency domain !

14

FIR Filters

The shape of the impulse response determines

 phase- and frequency response of an LTI system.

 The impulse response is also called „filter kernel“.

 ● Finite Impulse Response Filters can be implemented by a

 single convolution of an input signal with the filter kernel

 ● Several positive vaules in the impulse response give an

 averaging (low-pass) filter

 ● Substracting a low-pass filter kernel from the delta function

 gives a high pass filter kernel

 ● A symmetrical impulse response gives a linear phase response

15

FIR Filters

Example High and Lowpass Filter-Kernels:

16

Z - Transform

● Digital Filters can be described by the generalized

 discrete differential equation:

the right side depends only on the inputs x[n] : feed-forward

the left side depends on the previous outputs y[n] : feed-back

FIR Filters have only feed-forward components,

 they can be calculated non-recursively, by convolution

IIR Filters have feed-back components also,

 they are calculated recursivelsy (infinite impulse response)

a, b : filter coefficients

x[n] : input signal

y[n] : output signal

M,N : filter order

17

Z - Transform

● discrete version of the Laplace-transform

● using the Z-transform, the characteristics of a digital filter

 can be described by the transfer function:

● zx in Z-domain represents a delay element of x discrete delays,

● the numerator describes the feedfoward part of the filter, 0 = „zeros“

● the denumerator describes the feedback part of the filter, 0 = „poles“

18

Digital Filters – FIR filters

● finite impulse response,

 no recursion

● described by multiplication

 coefficients

● less sufficient (need higher order)

19

Digital Filters – IIR filters

● infinite impulse response,

 truncated at a certain precision

● use previously calculated values

 from the output (recursion)

● described by recursion coefficients

● more efficient, but can be unstable

20

Filter characteristics

Performance

 in Time Domain

21

Filter characteristics

Performance

 in Frequency Domain

22

typical IIR filters

Chebyshev, Butterworth and Bessel characteristics
23

Implementation Considerations

● floating point multiplication in uCs is usually very slow

● many uCs provide hardware multipliers and fast MAC - operations

● fractional number arithmetics speed up filter calculation -

 scale the input data and coefficients to get the needed precision,

 use integer multiplication, shift back the result:

Atmel Application note AVR223 – Digital Filters with AVR

 http://www.atmel.com/dyn/resources/prod_documents/doc2527.pdf

Issues:

 ● scaling factor / register size (overflow ?)

 ● resulting resolution

24

Design Digital FIR Filters

Frequencies that define complex zeros:

 f0=60Hz - power supply frequency

 fs=500Hz - sampling rate

we get w0 = 0.754

Positions of complex zeros:

Matlab-source: http://www.scienceprog.com/category/biomedical-dsp

60 Hz notch example

25

System Function:

Filter Coefficients:

Digital FIR Filters

scaling:

60 Hz notch filter example

26

Resulting Filter characteristics

Digital FIR Filters

 60 Hz notch filter example

27

Filter Design with Matlab / Simulink

● Filter Design Functions:

 h= fdesign.bandpass('N,Fc1,Fc2', N, Fc1, Fc2, Fs);
 Hd = design(h, 'butter');

 y=filter(Hd,x);

 b = fir1(N, Fc/(Fs/2), 'high', win, flag);

 Hd = dfilt.dffir(b);

 y=filter(Hd,x);

 [b,a]= butter (N,0.1,'high');

 y=filter(b,a,x);

● Filter Design and Analysis Tool (fdatool)

● Signal Processing Toolbox

● Simulink Signal Processing Blocksets:

28

Filter Implementation in Matlab

60Hz notch applied to ECG signal

load ecg_signals.mat;

dim=size(ecg);

t=0:1/fs:(dim(2)/fs-1/fs);

figure

subplot(2,2,1); plot(t, ecg);

title(' Original ECG');

xlabel('Time (s)');

w0=2*pi*((60)/(fs));

G=1/(2-2*cos(w0));

z1=cos(w0)+j*sin(w0);

z2=cos(w0)-j*sin(w0);

Fecg=filter

([1/G, -2*cos(w0)/G,1/G],1,ecg);

subplot(2,2,2); plot(t, Fecg);

title('Filtered ECG signal');

xlabel('Time (s)');

29

Filter Implementation in Matlab

highpass for ECG,

 signal parsed from a text file

fid = fopen('ekg.txt','r');

InputText=textscan(fid,'%f',1500,

'delimiter','\n');

x=cell2mat(InputText);

fclose(fid);

subplot(2,1,1);

plot(x);

[b,a]= butter (2,0.1,'high');

% 0.1 = 12,8 Hz at 256 Hz

y=filter(b,a,x);

subplot(2,1,2);

plot(y);

Example file: read_file_filter.m

30

Filter Implementation in Matlab

Fdatool: Filter Design and Analsys, export to Simulink / Workspace

31

Filter Implementation in Matlab

Filter Application and Test in a Simulink Model

Example file: filtertest.mdl

32

Open Source Alternatives: FiView and FidLib

● written by Jim Peters, part of the OpenEEG Source pool

● cross platform compatible (using SDL-Library)

● graphical comparison of different filters, testing with feed-signals

● example invocation for a 4-filter comparison:
 fiview 256 -f 10 -i LpBe4, LpBe6, LpBu4, LpBu8

● generates source code (C – functions)

● templates for standard filter types, creation by coefficients

Download Link http://uazu.net/fiview/

33

Other Signal Processing Techniques

34

Correlation

● same operation as convolution,

 but non-flipped multiplication

● finds similar signals in a signal

 (cross correlation)

● finds perodic parts of a signal

 (auto-correlation)

35

Discrete Fourier Transform

● Decomposition into

 sine- and cosine waves

 k .. base function

 i .. sample index

 N .. number of samples

● Finds frequency components

 of (periodic) signals

● Frequencies up to F / 2

36

Discrete Fourier Transform

● Inverse Transform:

● FFT-Algorithms:

 FFTW, FFTPACK,

 Green, Ooura, Sorensen

37

Discrete Fourier Transform

● Calculation of Magnitude and Phase response:

38

Discrete Fourier Transform - Problems

Stationary signal: correct representation of 4 frequency-components

Problems with non-stationary signals

39

Discrete Fourier Transform -> STFT

● Solution: Short Term Fourier-Transform:

 windowing is used to analyse small portions of (aperiodic) signals

40

Discrete Fourier Transform

● Problem with Short Term Fourier-Transform:

 window-size is fixed and determines tradeoff in resolution betewwn

 time and frequency:

41

Wavelet Transformation

● good frequency resolution at low frequencies and

● good time resolution at high frequencies

● no work-around for the principle of entropy

42

Wavelet Transformation

● scale (s) and translation (t) of the base wavelet

● convolution with the signal

● special wavelets for special purposes

43

A quick glance at

 Classification - Methods

44

Classification - Methods

 ● Input data: time or frequency domain characteristics

 ● purpose: clustering, event detection, data reduction

 ● get „semantic information“ out of our data

 ● achive a high detection rate ->

 few false-positive or false-negative classifications

 ● feature extraction is used to handle huge amounts of data

 -> reduce the feature space

45

Classification - Methods

Simple classification could be based on:

 ● Thresholds (levels / intervals, adaptive thresholds)

 ● absolute values + averaging over intervals

 ● integration / difference

 ● local minima / maxima, zeros in time domain

 ● Energy, energy distribution over frequency bands

46

Classification - Methods

Neural Networks:

● mimic biological signal processing

● Input-, hidden and output-layers

 units with activation functions

● learning algorithms e.g.

 error back propagation

 unsupervised learning / clustering

● internal representation unrevealed

● pattern recognition, predicition

47

Classification - Methods

Principal Component Analysis and

Independent Component Analysis:

● reduction of complexity of the feature-space

● singular-value decomposition delivers

 component functions (base-functions)

 that can restore the relevant information with

 less features

● ICA: non-orthogonal base functions allowed,

 used for blind-source separation

 EEG: artefact removal, signal source models

 Scott Makeig: http://www.sccn.ucsd.edu/~scott/

http://www.eurekalert.org

48

Classification - Methods

Suport Vector Machines (SVMs):

● binary classificatin of an input vector

● training with classified data seperates

 the feature space in two areas, with

 maximal distance of positive / negative

 classifications

● SVMs find a global minimum

 (in contrast to e.g. neural networks)

49

Tools and Libraries

EEGLab:

● Matlab-based, open source application

● 300 functions for data analsysis and

 feature extraction e.g:

 epoch based ERP averaging

 ICA-methods for source localisation

 handling of MRI-data

● imports command file formats

 like EDF, BDF, …

http://www.sccn.ucsd.edu/eeglab/

50

Tools and Libraries

Tempo:

● Topographic EEG Mapping Program

 (open source)

● 3d display of MRI head models,

● generates animated sequences

● imports EDF

http://tempo.sourceforge.net/

51

http://tempo.sourceforge.net/tempo.png

Tools and Libraries

BioExplorer:

● Real-time biosignal aquisition,

 analysis and classification

● FFT, filtering, correlation,

 adaptive thresholding

● File operations

● visual and acoustic biofeedback

● compatible with OpenEEG-hardware

http://www.cyberevolution.com/

52

Tools and Libraries

BWView:

● Wavelet-based signal analysis tool

 using fft-accelerated convolution

● open source

● compatible to OpenEEG-hardware

http://uazu.net/bwview/
Respiratory sinus arrythmia (RSA) seen with BWview

http://jhansmann.de/eeg/experiments/index.html

53

Frequency response and Impulse response, calculated and viewed with FiView

FiView and FidLib – IIR filter design tool by Jim Peters

Tools and Libraries

http://uazu.net/fidlib/

54

http://uazu.net/fidlib/
http://uazu.net/fidlib/

Example Filter code for a butterworth IIR filter,

 generated with FiView

// Example code (readable version)

double

process(register double val) {

 static double buf[4];

 register double tmp, fir, iir;

 tmp= buf[0]; memmove(buf, buf+1, 3*sizeof(double));

 val *= 0.0006918804381787758;

 iir= val+1.496016726996244*buf[0]-0.6177887989473995*tmp;

 fir= iir+buf[0]+buf[0]+tmp;

 tmp= buf[1]; buf[1]= iir; val= fir;

 iir= val+1.415382337323265*buf[2]-0.5062905959533784*tmp;

 fir= iir+buf[2]+buf[2]+tmp;

 buf[3]= iir; val= fir;

 return val;

}

Tools and Libraries

FiView and FidLib – IIR filter design tool by Jim Peters

55

#include "fidlib/fidlib.h" // May need adjusting

FidFilter *

setup() {

 FidFilter *filt0= fid_design("LpBe4", 256, 10, 0, 0, 0);

 return filt0;

}

...

 FidFilter *filt= setup(); // Run a couple of instances using fidlib

 FidFunc *funcp;

 FidRun *run= fid_run_new(filt, &funcp);

 void *fbuf1= fid_run_newbuf(run);

 void *fbuf2= fid_run_newbuf(run);

 while (...) {

 out_1= funcp(fbuf1, in_1);

 out_2= funcp(fbuf2, in_2);

 if (restart_required) fid_run_zapbuf(fbuf1);

 ...

 }

 fid_run_freebuf(fbuf2);

 fid_run_freebuf(fbuf1);

 fid_run_free(run);

FidLib C-library provides efficient

generic filter creation at runtime

Tools and Libraries

56

Tools and Libraries

EngineerJS: Online JavaScript IIR filter design Tool

http://engineerjs.com/?sidebar=docs/iir.htm

l

57

http://engineerjs.com/?sidebar=docs/iir.html
http://engineerjs.com/?sidebar=docs/iir.html

