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Module 4c: Bioelectric Signals  
Processing and Classification (Basics)  



 
Foundations of DSP 

Basic Operations: convolution 

Digital Filters: FIR and IIR 

Some Classification methods 

Biosignal Libraries and Applications 

 

Practical Demonstrations: Matlab and FiView 

Review of Project exercises 

Firmware - programming 

The Scientist and Engineer's Guide to Digital Signal Processing 

by Steven W. Smith, Ph.D.  http://www.dspguide.com/ 

Recommended online book for todays topics: 

Topics 
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http://www.dspguide.com/cover.htm


 
In microprocessor based biomedical applications 

 we have Signals that: 
 

    ●  are discrete (digitized with a sampling rate) 
 

    ●  are to a certian degree spoiled by noise or artifacts 
 

    ●  have some properties we are especially interested in 
 

    ●  have stochastic and sometimes nearly-deterministic behaviour 

Signal characteristics 

 
4 



Basic Signal Statistics 

Mean: 

 

 

Standard deviation: 
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Basic Signal Statistics 

Histogram, Probability mass function, Probability density function: 
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Foundations of DSP 

Signals and LTI-Systems: 
 

    ● Generation of an output signal  

        in response to an input signal 

     

    ● discrete and continuous systems 

 

 

Linear, Timeinvariant Systems: 
 

    ● additivity 

     

    ● homogeneity 

 

    ● shift invariance 

 
7 



Foundations of DSP 

● Synthesis: in linear systems, signals  

   can be combined by scaling and addition 

     

● Decomposition: the inverse operation 
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Foundations of DSP - Superposition 

● Any signal can be 

decomposed into a group of 

additive components xi 

 

● Passing these components 

through a linear system 

produces signals, yi 

 

● The synthesis of these output 

signals produces the same 

signal as when x [n] is passed 

through the system 
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Foundations of DSP - Convolution 

● combined two signals into a third one 

 

● applies a linear system to a signal via 

   it‘s impulse response, wich fully describes  

   the system behaviour 

  

M .. length of  

       impulse response 
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Foundations of DSP – Convolution 

Application of a LTI: 
    

   1) multiplication of the 

        input samples with  

        the flipped impulse  

        response 

 

   1) addition of the values 

        gives result for the 

        corresponding  

        output sample 
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Foundations of DSP - Convolution 

●  many samples of the input signals contribute to one output sample 

 

●  the samples of the impulse response act as weighing coefficients 

 

 

    
●  feeding a delta function into a linear system  

    gives the impulse response: 
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Foundations of DSP - Convolution 

● simple implemenation of convolution: 

// Input Signal: x[80], Impulse Response: h[30]  

// Output Signal: y[110]  

 

int i,j;  

for (i = 0; i< 110; i++)  

   for (y[i]=0,j=0; j<30; j++)  

       if ((i-j >= 0) && (i-j<80))  

          y[i] = y[i] + h[j] * x[i-j]  
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Impulse-, Step- and Frequency Response 

Relationships between impulse-, step- and frequency response: 

Note: Convolution in time domain = multiplication in frequency domain ! 
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FIR Filters 

The shape of the impulse response determines  

    phase- and frequency response of an LTI system.  

    The impulse response is also called „filter kernel“. 

 

    ●  Finite Impulse Response Filters can be implemented by  a   

        single convolution of an input signal with the filter kernel 

  

    ●  Several positive vaules in the impulse response give an 

        averaging (low-pass) filter  

 

    ●  Substracting a low-pass filter kernel from the delta function 

        gives a high pass filter kernel 

 

    ●  A symmetrical impulse response gives a linear phase response 
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FIR Filters 

Example High and Lowpass Filter-Kernels: 
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Z - Transform 

● Digital Filters can be described by the generalized  

   discrete differential equation: 

the right side depends only on the inputs x[n] :         feed-forward 

the left side depends on the previous outputs y[n] :  feed-back 

 

FIR Filters have only feed-forward components,  

     they can be calculated non-recursively, by convolution 

 

IIR Filters have feed-back components also, 

   they are calculated recursivelsy (infinite impulse response) 

a, b : filter coefficients 

x[n] : input signal 

y[n] : output signal 

M,N : filter order 
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Z - Transform 

● discrete version of the Laplace-transform 

● using the Z-transform, the characteristics of a digital filter 

   can be described by the transfer function: 

● zx  in Z-domain represents a delay element of x discrete delays, 

● the numerator describes the feedfoward part of the filter, 0 = „zeros“   

● the denumerator describes the feedback part of the filter, 0 = „poles“ 
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Digital Filters – FIR filters 

● finite impulse response,  

   no recursion 

 

● described by multiplication 

   coefficients 

 

● less sufficient (need higher order) 
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Digital Filters – IIR filters 

● infinite impulse response,  

   truncated at a certain precision 

 

● use previously calculated values  

   from the output (recursion) 

 

● described by recursion coefficients 

 

● more efficient, but can be unstable 
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Filter characteristics 

Performance 

   in Time Domain  
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Filter characteristics 

Performance 

  in Frequency Domain 
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typical  IIR filters 

Chebyshev, Butterworth and Bessel characteristics  
23 



Implementation Considerations 

● floating point multiplication in uCs is usually very slow 

● many uCs provide hardware multipliers and fast MAC - operations 

● fractional number arithmetics speed up filter calculation - 

   scale the input data and coefficients to get the needed precision,  

   use integer multiplication, shift back the result:  

Atmel Application note AVR223 – Digital Filters with AVR 

   http://www.atmel.com/dyn/resources/prod_documents/doc2527.pdf 

Issues:  

    ● scaling factor / register size (overflow ?) 

    ● resulting resolution 
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Design Digital FIR Filters 

Frequencies that define complex zeros: 

 

   f0=60Hz - power supply frequency 

   fs=500Hz - sampling rate 

 

we get w0 = 0.754 

 

Positions of complex zeros: 

Matlab-source:  http://www.scienceprog.com/category/biomedical-dsp 

60 Hz notch example 
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System Function: 

Filter Coefficients: 

Digital FIR Filters  

scaling: 

60 Hz notch filter example 
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Resulting Filter characteristics 

Digital FIR Filters 

 60 Hz notch filter example 
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Filter Design with Matlab / Simulink 

● Filter Design Functions: 

 
           h= fdesign.bandpass('N,Fc1,Fc2', N, Fc1, Fc2, Fs); 
      Hd = design(h, 'butter'); 

      y=filter(Hd,x); 

 

      b = fir1(N, Fc/(Fs/2), 'high', win, flag); 

      Hd = dfilt.dffir(b); 

      y=filter(Hd,x); 

 

 

      [b,a]= butter (N,0.1,'high'); 

      y=filter(b,a,x); 

 

● Filter Design and Analysis Tool (fdatool) 

● Signal Processing Toolbox 

● Simulink Signal Processing Blocksets: 
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Filter Implementation in Matlab 

60Hz notch applied to ECG signal 

load ecg_signals.mat; 

dim=size(ecg); 

 

t=0:1/fs:(dim(2)/fs-1/fs); 

figure 

subplot(2,2,1); plot(t, ecg); 

title(' Original ECG'); 

xlabel('Time (s)'); 

 

w0=2*pi*((60)/(fs)); 

G=1/(2-2*cos(w0)); 

 

z1=cos(w0)+j*sin(w0); 

z2=cos(w0)-j*sin(w0); 

 

Fecg=filter 

([1/G, -2*cos(w0)/G,1/G],1,ecg); 

subplot(2,2,2); plot(t, Fecg); 

title('Filtered ECG signal'); 

xlabel('Time (s)'); 
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Filter Implementation in Matlab 

highpass for ECG,  

         signal parsed from a text file 

fid = fopen('ekg.txt','r');  

InputText=textscan(fid,'%f',1500,

'delimiter','\n'); 

x=cell2mat(InputText); 

fclose(fid); 

subplot(2,1,1); 

plot(x); 

 

[b,a]= butter (2,0.1,'high');    

% 0.1 = 12,8 Hz at 256 Hz 

y=filter(b,a,x); 

 

subplot(2,1,2); 

plot(y); 

 

 

Example file: read_file_filter.m 
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Filter Implementation in Matlab 

Fdatool: Filter Design and Analsys, export to Simulink / Workspace 
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Filter Implementation in Matlab 

Filter Application and Test in a Simulink Model 

Example file: filtertest.mdl 
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Open Source Alternatives: FiView and FidLib 

● written by Jim Peters, part of the OpenEEG Source pool 

 

● cross platform compatible (using SDL-Library) 

 

● graphical comparison of different filters, testing with feed-signals 

 

● example invocation for a 4-filter comparison: 
   fiview 256 -f 10 -i LpBe4, LpBe6, LpBu4, LpBu8 
 

● generates source code ( C – functions ) 

 

● templates for standard filter types, creation by coefficients 

 

 

Download Link http://uazu.net/fiview/ 
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Other Signal Processing Techniques 
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Correlation 

● same operation as convolution, 

   but non-flipped multiplication 

 

● finds similar signals in a signal 

   (cross correlation) 

 

● finds perodic parts of a signal 

   (auto-correlation) 
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Discrete Fourier Transform 

● Decomposition into  

   sine- and cosine waves 

 

    k .. base function 

   i  .. sample index  

   N .. number of samples 

    

● Finds frequency components 

   of (periodic) signals 

● Frequencies up to  F / 2 
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Discrete Fourier Transform 

● Inverse Transform: 

 

 

 

 

 

 

 

● FFT-Algorithms: 

 

     FFTW, FFTPACK,  

     Green, Ooura, Sorensen  
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Discrete Fourier Transform 

● Calculation of Magnitude and Phase response: 
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Discrete Fourier Transform - Problems 

Stationary signal: correct representation of 4 frequency-components  

Problems with non-stationary signals 
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Discrete Fourier Transform -> STFT 

● Solution:  Short Term Fourier-Transform:   

   windowing is used to analyse  small portions of (aperiodic) signals 
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Discrete Fourier Transform 

● Problem with Short Term Fourier-Transform:   

   window-size is fixed and determines tradeoff in resolution betewwn    

   time and frequency: 
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Wavelet Transformation 

● good frequency resolution at low frequencies and  

● good time resolution at high frequencies 

● no work-around for the principle of entropy 
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Wavelet Transformation 

● scale (s) and translation (t) of the base wavelet  

● convolution with the signal  

● special wavelets for special purposes  
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A quick glance at 

 

     Classification - Methods 
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Classification - Methods 

 

  ● Input data:  time or frequency domain characteristics 

 

  ● purpose: clustering, event detection, data reduction 

 

  ● get „semantic information“ out of our data 

 

  ● achive a high detection rate -> 

     few false-positive or false-negative classifications 

  

  ● feature extraction is used to handle huge amounts of data 

     -> reduce the feature space 
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Classification - Methods 

Simple classification could be based on: 

 

 

  ● Thresholds (levels / intervals, adaptive thresholds) 

 

  ● absolute values + averaging over intervals 

 

  ● integration / difference 

 

  ● local minima / maxima, zeros in time domain 

 

  ● Energy, energy distribution over frequency bands  
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Classification - Methods 

Neural Networks: 

 

● mimic biological signal processing 

 

● Input-, hidden and output-layers 

   units with activation functions 

 

● learning algorithms e.g. 

   error back propagation 

   unsupervised learning / clustering 

 

● internal representation unrevealed 

 

● pattern recognition, predicition 

 

 
47 



Classification - Methods 

Principal Component Analysis and  

Independent Component Analysis: 

 

● reduction of complexity of the feature-space 

 

● singular-value decomposition delivers  

   component functions (base-functions)  

   that can restore the relevant information with  

   less features 

 

● ICA: non-orthogonal base functions allowed,  

   used for blind-source separation  

        EEG: artefact removal, signal source models 

 
        Scott Makeig: http://www.sccn.ucsd.edu/~scott/ 

 

http://www.eurekalert.org 
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Classification - Methods 

Suport Vector Machines (SVMs): 

 

● binary classificatin of an input vector 

 

● training with classified data seperates 

   the feature space in two areas, with  

   maximal distance of positive / negative  

   classifications 

  

● SVMs find a global minimum 

   (in contrast to e.g. neural networks) 
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Tools and Libraries 

EEGLab: 

 

● Matlab-based, open source application 

 

● 300 functions for data analsysis and  

   feature extraction e.g: 

      epoch based ERP averaging 

      ICA-methods for source localisation 

      handling of MRI-data 

 

● imports command file formats  

   like EDF, BDF, … 

http://www.sccn.ucsd.edu/eeglab/ 
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Tools and Libraries 

Tempo: 

 

● Topographic EEG Mapping Program 

    ( open source ) 

 

● 3d display of MRI head models, 

 

● generates animated sequences 

 

● imports EDF 

http://tempo.sourceforge.net/ 
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Tools and Libraries 

BioExplorer: 

 

● Real-time biosignal aquisition,  

   analysis and classification 

 

● FFT, filtering, correlation,  

   adaptive thresholding 

 

● File operations 

 

● visual and acoustic biofeedback 

 

● compatible with OpenEEG-hardware 

 

http://www.cyberevolution.com/ 
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Tools and Libraries 

BWView: 

 

● Wavelet-based signal analysis tool 

   using fft-accelerated convolution 

 

● open source 

 

● compatible to OpenEEG-hardware 

 

http://uazu.net/bwview/ 
Respiratory sinus arrythmia (RSA) seen with BWview  

http://jhansmann.de/eeg/experiments/index.html 
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Frequency response and Impulse response, calculated and viewed with FiView 

FiView and FidLib – IIR filter design tool by Jim Peters 

Tools and Libraries 

http://uazu.net/fidlib/ 
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Example Filter code for a butterworth IIR filter, 

  generated with FiView 

// Example code (readable version) 

double 

process(register double val) { 

   static double buf[4]; 

   register double tmp, fir, iir; 

   tmp= buf[0]; memmove(buf, buf+1, 3*sizeof(double)); 

   val *= 0.0006918804381787758; 

   iir= val+1.496016726996244*buf[0]-0.6177887989473995*tmp; 

   fir= iir+buf[0]+buf[0]+tmp; 

   tmp= buf[1]; buf[1]= iir; val= fir; 

   iir= val+1.415382337323265*buf[2]-0.5062905959533784*tmp; 

   fir= iir+buf[2]+buf[2]+tmp; 

   buf[3]= iir; val= fir; 

   return val; 

} 

Tools and Libraries 

FiView and FidLib – IIR filter design tool by Jim Peters 
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#include "fidlib/fidlib.h"    // May need adjusting 

FidFilter * 

setup() { 

   FidFilter *filt0= fid_design("LpBe4", 256, 10, 0, 0, 0); 

   return filt0; 

} 

... 

   FidFilter *filt= setup(); // Run a couple of instances using fidlib 

   FidFunc *funcp; 

   FidRun *run= fid_run_new(filt, &funcp); 

   void *fbuf1= fid_run_newbuf(run); 

   void *fbuf2= fid_run_newbuf(run); 

   while (...) { 

      out_1= funcp(fbuf1, in_1); 

      out_2= funcp(fbuf2, in_2); 

      if (restart_required) fid_run_zapbuf(fbuf1); 

      ... 

   } 

   fid_run_freebuf(fbuf2); 

   fid_run_freebuf(fbuf1); 

   fid_run_free(run); 

 

FidLib C-library provides efficient 

generic filter creation at runtime 

Tools and Libraries 
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Tools and Libraries 

EngineerJS: Online JavaScript IIR filter design Tool 

 

 

http://engineerjs.com/?sidebar=docs/iir.htm

l 
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